Brahma Is Required for Proper Expression of the Floral Repressor FLC in Arabidopsis
نویسندگان
چکیده
BACKGROUND BRAHMA (BRM) is a member of a family of ATPases of the SWI/SNF chromatin remodeling complexes from Arabidopsis. BRM has been previously shown to be crucial for vegetative and reproductive development. METHODOLOGY/PRINCIPAL FINDINGS Here we carry out a detailed analysis of the flowering phenotype of brm mutant plants which reveals that, in addition to repressing the flowering promoting genes CONSTANS (CO), FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1), BRM also represses expression of the general flowering repressor FLOWERING LOCUS C (FLC). Thus, in brm mutant plants FLC expression is elevated, and FLC chromatin exhibits increased levels of histone H3 lysine 4 tri-methylation and decreased levels of H3 lysine 27 tri-methylation, indicating that BRM imposes a repressive chromatin configuration at the FLC locus. However, brm mutants display a normal vernalization response, indicating that BRM is not involved in vernalization-mediated FLC repression. Analysis of double mutants suggests that BRM is partially redundant with the autonomous pathway. Analysis of genetic interactions between BRM and the histone H2A.Z deposition machinery demonstrates that brm mutations overcome a requirement of H2A.Z for FLC activation suggesting that in the absence of BRM, a constitutively open chromatin conformation renders H2A.Z dispensable. CONCLUSIONS/SIGNIFICANCE BRM is critical for phase transition in Arabidopsis. Thus, BRM represses expression of the flowering promoting genes CO, FT and SOC1 and of the flowering repressor FLC. Our results indicate that BRM controls expression of FLC by creating a repressive chromatin configuration of the locus.
منابع مشابه
PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis.
Proper control of the floral transition is critical for reproductive success in flowering plants. In Arabidopsis, FLOWERING LOCUS C (FLC) is a floral repressor upon which multiple floral regulatory pathways converge. Mutations in PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 (PIE1) suppress the FLC-mediated delay of flowering as a result of the presence of FRIGIDA or of mutations in autonomous pathw...
متن کاملISWI Family Gene, Is Required for FLC Activation and Floral Repression in Arabidopsis
Proper control of the floral transition is critical for reproductive success in flowering plants. In Arabidopsis, FLOWERING LOCUS C ( FLC ) is a floral repressor upon which multiple floral regulatory pathways converge. Mutations in PHOTOPERIODINDEPENDENT EARLY FLOWERING1 ( PIE1 ) suppress the FLC -mediated delay of flowering as a result of the presence of FRIGIDA or of mutations in autonomous p...
متن کاملHistone H2B deubiquitination is required for transcriptional activation of FLOWERING LOCUS C and for proper control of flowering in Arabidopsis.
The spectrum of histone modifications at a given locus is a critical determinant for the correct output of gene expression. In Arabidopsis (Arabidopsis thaliana), many studies have examined the relationship between histone methylation and gene expression, but few studies exist on the relationship between other covalent histone modifications and gene expression. In this work, we describe the rol...
متن کاملAdditional targets of the Arabidopsis autonomous pathway members, FCA and FY.
A central player in the Arabidopsis floral transition is the floral repressor FLC, the MADS-box transcriptional regulator that inhibits the activity of genes required to switch the meristem from vegetative to floral development. One of the many pathways that regulate FLC expression is the autonomous promotion pathway composed of FCA, FY, FLD, FPA, FVE, LD, and FLK. Rather than a hierarchical se...
متن کاملArabidopsis thaliana VOZ (Vascular plant One-Zinc finger) transcription factors are required for proper regulation of flowering time
Transition to flowering in plants is tightly controlled by environmental cues, which regulate the photoperiod and vernalization pathways, and endogenous signals, which mediate the autonomous and gibberellin pathways. In this work, we investigated the role of two Zn(2+)-finger transcription factors, the paralogues AtVOZ1 and AtVOZ2, in Arabidopsis thaliana flowering. Single atvoz1-1 and atvoz2-1...
متن کامل